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Abstract-In this paper the problem of the lateral stability of imperfect viscoelastic beams is
analysed, The problem is examined by means of the quasi-static approach and leads to a system of
integro-differential equations which can be resolved by a series expansions and the Laplace trans
forms. The viscous critical load is defined according to the asymptotic behaviour of the beam and
can be evaluated by introducing the assumption of weak fading memory, solid material and
thermodynamic compatibility. The critical load does not depend either on the type or the entity of
the imperfections. Furthermore, some characteristic aspects of the problem, like the faster progress
of the torque moment with respect to the progress of the lateral bending moment, are underlined.
For a three-element model it is possible to reach a closed-form solution. In the case of the Poisson
ratio constant in time and three-element model, an interesting analogy with the asymptotic behaviour
of the imperfect column is observed.
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parameters for describing the solution
functions for describing the relaxation
axial and shear elastic modulus
constants of the three-element model
components of the strain tensor
rotation of the cross-section
initial imperfections given by rotations
torsion modulus
momentum of inertia with respect to z-axis
moments with respect to x, y, z-axes
ratio between the bending moment and the ith Euler bending moment
Poisson ratio
components of the stress tensor
ratio between the axial load and Euler axial load
lateral displacements along the y-axis
initial imperfections given by lateral displacements.

I. INTRODUCTION

The stability of viscoelastic structures is always of particular interest because the external
load giving rise to structural failure over a long period is notably less than the critical load
obtained by an elastic analysis at the initial instant. The judgement on the stability of a
motion for a viscoelastic system is usually defined on the basis of the features of the motion
caused by a small variation of the data (disturbance). If the motion consequent to the
disturbance is bound then it is stable, otherwise it is unstable. In the past, the most
meaningful analyses involving viscoelastic stability dealt with the column problem under
lining some important questions (Oost and Glockner, 1985; Szyszkowski and Glockner,
1985; Russo Spena and Sparacio, 1989), whereas works on the problem of the lateral
stability of deep beams are not available in literature.

In this work, the authors intend to deal with the latter problem by studying the
behaviour of a beam subjected to a constant bending action and constrained at the ends,
assuming the small deformation theory and a linear isotropic viscoelastic material. The
disturbance consists of geometric imperfections and the inertia forces are neglected (quasi
static approach). In contrast to the column case, the bending action and the torque moment
act together to produce a biaxial stress in the material, therefore two different temporal
functions are required to describe the constitutive law of the material.
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The examined problem is governed by a system of two integro-differential equations
which lead to a well-posed problem (Volterra equation) for a bending moment smaller than
the Euler moment, consequently a bound solution is obtained for every bound time interval.
Therefore, as already noted in the case of the column, a finite critical time cannot be defined
in this case either and the instability conditions can be reached only in infinite time, as
shown by Hilton (1961) and Kempner and Pohle (1953) ; the critical load is then defined
with regards to the asymptotic behaviour.

The problem has been approached by means of series expansion and Laplace trans
forms. By introducing the assumptions of weak fading memory, solid material and ther
modynamic compatibility, investigated by Fabrizio and Morro (1988) and Fabrizio and
Lazzari (1991) and Giorgi (1989), it is possible to achieve a general stability condition and
to prove that a viscous critical load, depending only on the viscoelastic parameters, can be
defined. This critical load is smaller than the Euler load and, in the case of decreasing
relaxation functions, can be directly related to the asymptotic moduli of the material. With
regard to the evolution in time of the phenomenon, it is observed that the progression of
the rotations is always more rapid than the progression of the lateral displacements; it
follows that the torsional action grows more rapidly with respect to the bending moment.
In this stability problem, the imperfections may be introduced in two different ways:
through an initial displacement or an initial rotation of the cross-section. The problem has
been approached in both ways, showing that the asymptotic behaviour is the same and
that the viscous critical load obtained depends neither on the entity nor on the type of
imperfections, even though the solutions progress in time in a different manner.

The previous qualitative analysis has been integrated by performing a closed-form
solution for a simple viscoelastic model as for the three-element model. In this case it has
been possible to compare these results with those of the better known problem of the
bending stability of an imperfect column where the viscous phenomena considerably affect
reliability. In the particular case of the Poisson ratio constant in time, an interesting result
is obtained: the ratio between the viscous critical load and the Euler load assumes the same
value in both cases. Therefore, even in the problem of the lateral stability of deep beams,
viscosity notably affects reliability.

Some aspects of the problem are discussed in a numerical example.

2. STATEMENT OF THE PROBLEM

2.1. Constitutive equations
It is assumed that the material is isotropic and linearly viscoelastic. The isotropy

assumption permits the constitutive law to be expressed simply by two independent temporal
functions; in the examined problem, it is useful to define two functions that make it possible
to simplify the formulation by leading to relationships which are formally similar to those
obtained in the elastic De Saint Venant theory of rods. In this theory, it is assumed that
the stress components (Jrn (Jzz and (Jvz are null (see Fig. I), and that it is possible to express

G ",x

Fig. I. Problem geometry and reference system.
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,.,. in terms of 8 only by means of the elastic modulus E. This can also be done in theVxx xx

viscous case by introducing an analogous function that will be denoted by E(t). If 8xx (t) = 0
for t < 0, the axial stress (jxx can be expressed in the following form (Christensen, 1971;
Leitman and Fisher, 1973) :

where Eo = E(O) > 0, e(t) = £(t)/Eo, * denotes convolution and it is assumed that E(t) is
an absolutely continuous function on [0,00). It is then useful to introduce the function G(t)
which gives the shear stresses by means ofa quantity analogous to the shear elastic modulus
G, often used in the elastic torsion problem. The following laws therefore hold:

where Go = G(O) > 0, g(t) = G(t)/Go, and it is assumed that E(t) is an absolutely continuous
function on [0, 00).

2.2. Equilibrium equations
The balance equations ruling the problem will now be formulated assuming that:

-the beam has a constant and doubly symmetric cross-section with centroid on the
x-axis;

- the beam is pinned and torsionally clamped at the ends;
- the beam undergoes two bending moments My at the ends for t ~ 0 and a permanent

disturbance due to the imperfections <Po(x) ;
- the assumption of small deformation holds;
-the inertia forces and the non-uniform torsion are neglected.

The function <Po(x) describes the rotation distribution existing before the load appli
cation, which is due to imperfection. It should be noted that the choice of the disturbance
was an arbitrary one but a different type of disturbance may be introduced by means of an
imperfection function vo(x) standing for the deviations ofthe centroid from the x-axis. The
solution corresponding to this different case will be presented in Section 6, in which it will
be shown that the asymptotic behaviour is the same.

The beam shown in Fig. I is now subjected to the external forces from the instant
t = o. With the above, the bending and torsional actions for this beam (De Saint Venant
theory) can be expressed by means of the displacement and rotation components with
equations similar in form to those of the elastic case. Assuming the x-axis placed at the
centroid of the cross-section and by denoting the displacement along the y-axis of the points
in the axis of the beam as v(x, t), the following relationship holds:

(4)

in which Jz denotes the momentum of inertia with respect to the z-axis.
By denoting the rotation of the cross-section by <p(x, t), the torque moment can be

written in the following way:
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(5)

where J t is the torsion modulus.
The flexural and torsional balance equations in the local form (Murray, 1986; Timo

shenko and Gere, 1961), provide the following system:

and the boundary conditions are as follows:

v(O, t) = vct, t) = ¢eo, t) = ¢(t, t) = 0,

(6a)

(6b)

(7)

where (is the beam length. By substituting the expression of the second derivative of vex, l)
obtained from the second equation, in the first and dividing by J"EoJtGo, the following
equation in the only unknown function 1'(x, t) can be obtained:

3. SOLUTION OF THE PROBLEM

Since the orthogonal series sin (nnx(t> is complete in the space of the functions satisfy
ing the boundary conditions, the problem unknown can be assumed in the following form:

f nnx
<!>(x, t) = L 1',,(t) sin --1'-

fI= 1

and the function describing the imperfections in the form (by Fourier expansion):

Consequently, the following equation must be satisfied for every n:

(9)

(10)

where m" represents the ratio between the bending moment M r and the nth Euler buckling
moment

Mvl
mn = -~-=:=--'-:-=-=------.

jEoGoJzJ1m[
(12)

Therefore, the Fourier coefficient <Prr(t) is the solution of the second type Volterra equation
(1). This solution, that exists and is unique for every closed interval [0, t] with t < 00, can
easily be obtained by means of the Laplace transforms. Using the convolution theorem the
following expression is obtained:
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<P m;<POn 1
n(s) = -s- (1 +e(s))(1 +g(s) )-m;'
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(13)

(14)

The inverse transform of <Pn(s) now needs to be determined. The difficulty of this operation
essentially depends on the expression of e(t) and g(t); in general, it can be carried out by
approximate procedures already known in literature, as described in Christensen (1971).

The displacements v(x, t) can be subsequently obtained from the rotations by means
ofthe equilibrium equation. By expanding the function v(x, t) into sine series and introducing
the relation ofeqn (6b), the following relation between the Fourier coefficient ofv(x, t) and
<p(x, t) can be obtained:

This equation makes it possible to write the lateral displacement in the form:

Jl~( ).mcx
v(x, t) = My n'::l <Pn(t) +g(t) * <Pn(t) smt'

(15)

(16)

4. STABILITY DISCUSSION

In this section the asymptotic behaviour of the beam (t ~ 00) loaded by a moment
smaller than the Euler moment (mn < 1) is analysed. The beam is defined as stable if the
displacements are bound and tend to a finite limit. Some characteristics of the solution can
be deduced from the properties of the Laplace transform and, in particular, the terms <Pn{t)
are bound for t ~ 00 if their transforms <Pis) satisfy the following conditions:

lim s<Pn(s) < 00,
.-+0

(17)

(18)

Here, the weak fading memory condition introduced by Fabrizio and Lazzari (1991)
is assumed, i.e.

f' le(t)1 dt < 00, fJ Ig(t)1 dt < 00,

and the additional property holds:

LX) e(t) dt > -1, 1
00

g(t) dt > 1.

(19)

(20)

This last property ensures that the material is solid because E(00) and G(00) exist and are
positive. Therefore the transforms e(s) and g(s) exist for s ~ O. It can now be concluded
that the condition (17) is satisfied and

(21)

It is also assumed that the relaxation functions E(t) and G(t) are compatible with
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thermodynamics, i.e. the following conditions, determined by Fabrizio and Morro (1988).
hold:

f:: e(t) sin OJt dt < 0 VOJ> 0; f g(t) sin OJI dt < 0 VOJ> O. (22)

The previous properties (19) and (22) allow us to affirm that (I +e(s») and (I +g(s)) are
positive for every s ~ 0, as proved by Fabrizio and Lazzari (1991) and Giorgi (1989), and,
observing eqn (14), it can be concluded that the condition (18) is satisfied for all terms if

(23)

Consequently, some bending moment values for which the solution is stable always exist
for a viscoelastic solid. It must be pointed out that (19, 20, 22) are the same assumptions
which ensure the existence and uniqueness of the classic viscoelastic problem (Fabrizio and
Lazzari, 1991).

The previous stability condition is very general because it is based only on the assump
tion of solid material and thermodynamic restrictions. More interesting and useful prop
erties of the solution can be obtained by introducing the further assumption (monotonicity) :

e(t) ~ 0, get) ~ 0, (24)

which is not due to thermodynamic restrictions but has been verified by all the relaxation
functions deduced from experimental observations (Fabrizio and Morro, 1988). In this case
e(O) ~ e(s) and g(O) ~ g(s) and the stability condition becomes

ml < m~r = v!(I+i(oY)(1 +g(O»), (25)

where m~r is the critical ratio between the moment My and the Euler moment; the viscoelastic
critical moment assumes the form:

(26)

The previous expression has a remarkable physical significance because Eo(l +e(O») =
E( (1) and Go(1 +g(O») = G( (1). Therefore the viscous critical moment is equal to
the Eulerian moment evaluated with reference to the equilibrium moduli E( (1) and G( (1).

As expected, the critical viscous load is lower than the Euler load and depends on both
the functions E(t) and G(/) describing the material behaviour under multi-axial strain.
It must also be noted that m~r does not depend on the entity of the disturbance and,
more generally, on the known terms of the balance equation.

The closed-form solution cannot be performed in general terms, however some aspects
of the evolution in time of the internal actions can still be posed in evidence. In particular,
it can be observed that the lateral displacements v(x, I) progress in time more slowly than the
rotations. This fact can be shown by writing the ratio Vn(t)/vn(0) between the displacement at
a generic instant and at the initial instant, for a generic nth component, and by comparing
this with the corresponding ratio ¢n(/)/cPn(O) between the rotations. In fact, the following
relationship can be derived from eqns (16) and (24):

\
Vn(t) \
vn(O)

(27)

Taking into account that the bending and torque moments are related to vex, t) and ¢(x, t)
respectively by means of two linear operators [eqns (4), (5)] it can be deduced that the
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torque moment also evolves in time more rapidly than the bending moment. Consequently
the torsion action becomes more important in time for evaluating reliability.

5. SOLUTION FOR THE THREE-ELEMENT MODEL

When the viscous model is particularly simple, an analytical solution can be achieved.
At this point, the three·element model schematized in Fig. 2, is considered. This case
represents the simplest spring·dashpot model that can simulate the behaviour of a linear
viscoelastic solid material and permits the carrying out of some significant observations.

The model consists of an elastic spring in series with a Kelvin element (spring and
dashpot in parallel). The viscous kernels have the following analytical expressions [reported
in Flugge (1975)] :

e(t) = -E*exp(-11t),

g(t) = - G* exp ( - yt),

where the constants are positive and are given by

(28a)

(28b)

E* =Eo
J.lE'

G* = Go, ,
J.lG

(29)

The Laplace transforms can be easily determined in the following form :

E* G*
e(s) = --, g(s) =--

S+11 s+y'

and introduced into eqn (14) they provide the following:

where the introduced constants an> bn> en are equal to

bn = (11+y)(I-m,;)-(E*+G*),

en = 11y(l-m,;) E*y-G*11+E*G*.

(30)

(31)

(32a)

(32b)

(32c)

The inversion transform ofa ratio between polynomials of this type can be found by means
of the roots of the denominator that, in this case, are three and are given by

Fig. 2. Three-element models.
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SOn = 0, (33a)

(33b)

(33c)

When the bending moment is lower than the critical Euler moment, the term
b; - 4ancn is positive, so that the roots S In and S2n are always real. The inverse transform of
the nth Fourier coefficient can be carried out and written in the form:

(34)

Now, the component vn(t) can be obtained from eqn (15). It should be observed that each
displacement component varies in time with a different law and the viscous deformation is
not proportional to initial deformation.

The viscous critical load can be easily evaluated by means ofeqn (25) and the following
form is obtained:

(35)

Many authors have investigated the behaviour of viscoelastic columns describing the
material by a three-element model. An interesting comparison between that problem and
the problem analysed here can be made in the particular case in which the Poisson ratio v
is a constant during the viscous phenomena. In this case only one viscous function is required
to describe the constitutive law mapping the strain tensor into the stress tensor. In the
considered case, the function E(t) can be assumed to be independent and the ratio between
G(t) and E(t) can be imposed so that it does not vary in time and maintains the initial
value between G(O) and E(O), i.e. G(t) = E(t)j[2(l +v)). For the three-element model this
condition provides the two relationships y = 1J and G* = E*. Thus the viscous critical load
can be written in the following form:

E*
m~r = 1-

1J
(36)

The authors who have studied the problem of viscoelastic columns obtained the following
ratio p~r between the viscous critical load and the Euler load for a three-element model
(Dost and Glocker, 1985; Szyszkowski and Glockner, 1985; Russo Spena and Sparacio,
1989):

E*
p~r = 1-

1J
(37)

This value is exactly equal to that obtained in the problem oflateral stability of a beam in
the special case of v constant in time. However, even if the asymptotic critical load is the
same, the two problems are different and both the rotations and the lateral displacements
of the cross-section evolve in time through a different law with respect to the displacements
of the column.



Asymptotic behaviour of imperfect viscoelastic beams 1541

6. SOLUTION IN THE CASE OF THE IMPERFECTION vo(x)

In this chapter, the behaviour of a beam subjected to imperfections given by the
function vo(x) is analysed. The balance equations, corresponding to eqns (6a-b) have the
following form :

(38a)

(38b)

and the following equation in the sole unknown 4>(x, t), corresponding to eqn (8), is
obtained:

Unlike the previous case, it can be noted that the known term is not a constant but varies
in time. The solution can be obtained by following the same process used for the 4>o(x) type
imperfections, to attain the following series of equations with respect to the component
4>n(t) of the unknown function expanded in sine series:

- (4)n(t) +e(t) * 4>n(t) +get) *4>n(t) +e(t) *get) *4>n(t) )+m;4>n(t) = - VOn -e(t) *VOn'

(40)

where mn is defined in eqn (12) and

~ My
VOn = JtG

o
VOn, (41)

where VOn is the nth component of vo(x). The Laplace transform of the nth component
assumes the form:

von(1+se(s») I
<Pn(s) = s (1 +e(s»)(1 +g(s) )-m;

and, for the three-element model, the following inverse transform is obtained:

(42)

(43)

where the constants an, bn, en are defined in eqns (32a-<:) and the roots San (ex = 1,2) in eqns
(33a-<:). Consequently, the stability conditions coincide with those of the case examined in
the previous chapters, even if the evolution in time differs. In fact it can be noted that, for
a three-element model, the ratio 4>n(t)/4>nC0) asymptotically tends to a different value of the
previous case and consequently the rotations undergo a different gain with respect to the
previous case when t -+ 00.
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7. APPLICATION

A numerical example can be developed assuming a three-element model for which
Eo = E] = 30,000 MPa and f..lE = 1.0 X 106 MPa days. Such a model can describe, fairly
accurately, the behaviour of concrete undergoing a uni-axial stress for period of up to 300
days. For this material, in usual environmental conditions, the Poisson ratio gradually
drops from v = 0.2 to almost zero. Assuming I] = )'. the constants Go and G, may be
assigned in such a way as to satisfy the relation G(O) = E(0)![2( 1+ 0.2)] due to the condition
v = 0.2 when t = 0 and the relation G(x) = E(Cf~)!2 due to the condition v = 0 when
t --+ (JJ . Therefore the values Go = 12,500 MPa and G, = 18.750 MPa are fixed for the con
stants describing shear deformability.

In this case the ratio m~r = 0.548 between the viscous critical load and the Euler load
is obtained. It follows that the reliability of stability red uces considerably in time.

A sinusoidal disturbance cPo(x) = cPo sin (nx!t) is considered, so the displacement
components with index n > I are all zero. Figure 3(a) shows the ratios cP, (t)!¢, (0) between
the maximum rotation at the instant t and the maximum rotation at the initial instant for
different values ofm ,. The dotted line shows this ratio in the case of the different disturbance
vo(x) = Vo sin (nx!t) and m 1 = 0.5. In this case, the rotation increases more rapidly although
it tends to the same asymptotic value. Figure 3(b) reports the ratios I',(t)/l.' ,(0) for different
values of the load m] and cPo(x) type imperfections. By comparing Fig. 3(a) and Fig. 3(b),
it can be noted that, as expected, the lateral displacements are amplified less than the
rotations.

At this point it is interesting to analyse the evolution of bending and torsion actions.
As can be seen in Figs 4(a)-(b), the ratio between the action at the instant t and that at the
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Fig. 3. Displacements in time: (a) rotations; (b) lateral displacements.

0.6 0.548 0.5 0.6 0.548

,.....8 0.50' 8
0:;:;- .....-
N::l!! ;::;;l

~ 0.4 "-..., 4 -::;-4 0.4.....- .....-
$l 0.3 N

;::;;l 0.3

0
0

0
0100 200 300 100 200 300

time (days) time (days)
(a) (b)

Fig. 4. Internal actions in time: (a) torque moment: (b) bending moment.
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Fig. 5. Ratio Mt(t)M,(O)/M,(O)M,(t) in time.
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initial instant increases considerably in each case even when m I is notably less than the
critical load. The ratio Mt{t)Mz(O)/Mt(O)Mz(t) between the amplification of the torque
moment and the amplification of the bending moment for different values ofm 1 is presented
in Fig. 5. It is evident that the growth of the torque moment is considerably faster than
that of the bending moment both in the case of stable beams, in which the moments tend
to a finite value, and in the case of unstable beams.

8. CONCLUSION

In this work the influence ofthe viscosity on the lateral stability ofviscoelastic imperfect
beams has been analysed by means of a quasi-static approach, obtaining a solution through
series expansion and Laplace transforms.

By assuming a solid material compatible with thermodynamics, it is possible to relate
the asymptotic behaviour to the bending moment and to the viscoelastic parameters of the
material. Consequently a stability condition and a viscous critical moment are established.
This critical moment is smaller than the Euler moment and depends neither on the entity
nor on the type (rotations or displacements) of the imperfection. Furthermore a qualitative
analysis of the solution has shown that the rotation and the torque moment grow in time
faster than the displacement and the bending moment, respectively.

A closed form solution can be performed for a three-element model. In the case of the
Poisson ratio being constant in time an interesting observation can be made: the ratio
between the viscous critical moment and the Euler moment is equal to the ratio between
the viscous critical load and the Euler load established for an imperfect column.

A numerical example has been developed with reference to a concrete beam. This
application shows the main aspects of the problem and demonstrates the viscosity notably
affects reliability in real cases.
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